综合新闻 news
联系人生就是搏尊龙
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室

上海光机所等在钙钛矿量子点微纳激光性能提升方面取得进展 -人生就是搏尊龙

日期: 2019-10-15
浏览次数: 47

来源:今日头条

近日,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与重庆大学合作在实现钙钛矿量子点稳定发光的合成控制及微纳激光性能提升领域取得新进展。相关研究成果以封面文章发表于advanced science(2019, doi: 10.1002/advs.201900412)


钙钛矿量子点具有优异的光学性能,如窄带发光、单色性好、荧光量子产率高等特点,在多个领域具有巨大的应用潜力。然而,卤化物钙钛矿量子点对极性溶剂和高温比较敏感,限制了其进一步应用。此外,单个卤化物钙钛矿量子点存在荧光闪烁性,阻碍了其在量子点发光二极管、纳米激光、固态照明等领域的应。

图2 (a)纯cspbbr3量子点的荧光强度波动轨迹图和荧光强度统计图;(b)cspbbr3/cds量子点的荧光轨迹图;(c)反荧光漂白曲线;(d和e)纯cspbbr3量子点和cspbbr3/cds量子点在不同时刻的视频截图

图3 (a)cspbbr3/cds量子点wgm微纳激光发射光谱;(b)发射强度与激发强度的依赖关系,品质因子为1217。

该研究中,首次将cds纳米材料对单颗粒的cspbbr3量子点进行包覆,有效提高了其在高湿度、高温度下的稳定性。通过荧光显微镜技术对包覆前后的量子点进行闪烁性测试,结果表明包覆后的cspbbr3/cds量子点呈现出明显的非闪烁性特征。研究表明由于cds壳成功包覆之后,将cspbbr3量子点中的载流子限制在其表面,从而有效抑制了非辐射俄歇复合,保证了载流子在量子点内部的辐射复合发光,抑制闪烁性。此外,研究小组利用显微光学系统分别对cspbbr3量子点及cspbbr3/cds量子点的自发放大发射及激光性能进行研究。在自发放大发射(ase)的测试中,包覆后的钙钛矿量子点展示了更优异的性能,其ase阈值下降了14%。为进一步探索cspbbr3/cds量子点的激光性能,将cspbbr3/cds量子点作为增益介质,填充入微毛细管中,在双光子泵浦源的激发下,成功检测到稳定的回音壁模式(wgm)激光,并且该激光呈现低阈值、高品质的特点,在纳米激光领域有巨大的应用潜力。

该项研究得到中科院b类先导专项、国家重点研发计划-政府间国际科技创新合作重点专项、中科院“百人计划”、国家自然科学基金等的支持。

来源 上海光机所

论文连接

https://onlinelibrary.wiley.com/doi/10.1002/advs.201900412



hot news / 相关推荐
  • 2022 - 05 - 19
    点击次数: 1
    原创 材料学网导读:高强度的mg-ca和/或mg-ce基合金已经得到了很好的发展,但这些镁合金的热稳定性以前很少被研究。本文研制了一种新型的mg-0.8ca-0.7mn-0.2ce合金,具有良好的热稳定性。在300℃下退火6h后,该合金的屈服强度仍能保持在~322mpa。相关研究结果可为开发既具有超高强度又具有高热稳定性的新型镁变形合金提供重要指导。 作为最轻的结构金属材料,镁合金在汽车...
  • 2022 - 05 - 19
    点击次数: 0
    来源: 科技日报 葡萄糖是人们从食物中吸收的糖分,它是为人体每个细胞提供动力的“燃料”。那么葡萄糖是否也能为医疗植入物提供动力?美国麻省理工学院和德国慕尼黑工业大学的工程师给出了肯定答案。他们设计了一种新型葡萄糖燃料电池,可将葡萄糖直接转化为电能。该装置厚度仅400纳米,约为人类头发直径的1/100。该含糖电源每平方厘米产生约43微瓦的电力,实现了迄今为止葡萄糖燃料电池的最高功率密度。近...
  • 2022 - 05 - 18
    点击次数: 0
    来源:中国粉体网中国粉体网讯  5月10日凌晨,天舟四号货运飞船在文昌发射场成功发射,在历经数小时飞行后顺利完成与空间站核心舱后向对接,这是我国空间站建设从关键技术验证阶段转入在轨建造阶段的首次发射任务,标志着中国空间站正式开启全面建造。其中,中国科学院上海硅酸盐研究所研制的9种涂层与材料成功应用于天舟四号货运飞船和长征七号遥五运载火箭,助力空间站建设新征程。在此次空间任务中,上海硅酸盐...
  • 2022 - 05 - 18
    点击次数: 0
    稿源:cnbeta.com俄罗斯科学家已经合成了一种含有钪和碳的新型超硬材料。它由聚合的富勒烯分子组成,里面含有钪和碳原子。这项工作为未来研究富勒烯基超硬材料指明了方向,使其成为光伏和光学设备、纳米电子学和光电子学元素、生物医学工程作为高性能造影剂等方面的潜在候选材料。该研究报告发表在《碳》杂志上。近四十年前,被称为富勒烯的新型全碳分子的发现是一个革命性的突破,为富勒烯纳米技术铺平了道路。富勒烯具...
  • 尊龙凯时官方入口 copyright ©尊龙凯时官方入口 copyright 2018  2020 上海市稀土协会 all rights reserved
    主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
    犀牛云提供企业云服务
    网站地图