综合新闻 news
联系人生就是搏尊龙
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室

as: 基于近红外稀土纳米晶/量子点双激发解码策略的精准温度探测 -人生就是搏尊龙

日期: 2020-09-08
浏览次数: 15

来源:中国光学期刊网

近红外荧光比率型温度传感具有较大的组织穿透深度、较低的背景荧光干扰及无创探测等优点,因而在生物医学领域具有广阔的应用前景。为了避免荧光探测信号相互串扰,传统的近红外荧光比率型温度探测模式采用两个无交叠的荧光发射的强度之比作为温敏参数。然而,光在生物组织中的衰减系数具有波长依赖性,因而两个无交叠的荧光发射的强度之比这一温敏参数不仅受温度调制,还与荧光信号在组织中的衰减系数及穿透深度有关。因此,利用传统的近红外荧光比率型温度探测模式进行生物组织内温度探测时,所获得的温敏参数会因为光在组织中的衰减而偏离真实值,导致产生温度测量偏差。因此,如何实现生物组织内准确的温度探测依然是一个严峻的挑战。

中国科学院福建物质结构研究所陈学元课题组针对上述问题,首次提出了利用基于稀土纳米晶/量子点复合物探针的双激发解码策略来实现生物组织内精准温度探测。首先,利用核壳结构naluf4: nd3 , gd3 @nagdf4稀土纳米晶和pbs@cds@zns量子点在两亲分子形成的胶束中进行自组装来构建稀土纳米晶/量子点复合物微球,并将其在808 nm激光激发下,波长均位于1057 nm处的两个分别来自于量子点及纳米晶中nd3 离子的发射的强度之比定义为温敏参数。随后,该团队巧妙地利用量子点与nd3 离子不同的光吸收特性,选用与808 nm激光波长相近且共路的另一束830 nm激光来单独激发出复合物中量子点的发光,最终通过此种双激发策略将1057 nm处重叠的发射信号进行分离,并计算其发射强度比值作为温敏参数。进一步地,该团队从实验上验证了双激发解码策略相较于传统的近红外荧光比率型温度探测模式在生物组织内温度探测的准确度方面的显著优越性。相关结果以全文的形式发表于《advanced science》杂志(doi: 10.1002/advs.202001589)。

该项研究工作所提出的基于稀土纳米晶/量子点双激发解码策略突破了传统的近红外荧光比率型温度探测模式在生物组织内部探温中存在测量偏差这一瓶颈问题,为实现组织内温度精准探测提供了新思路,并对其它类型的比率型荧光生物检测也具有方法论意义。



hot news / 相关推荐
  • 2022 - 05 - 19
    点击次数: 1
    原创 材料学网导读:高强度的mg-ca和/或mg-ce基合金已经得到了很好的发展,但这些镁合金的热稳定性以前很少被研究。本文研制了一种新型的mg-0.8ca-0.7mn-0.2ce合金,具有良好的热稳定性。在300℃下退火6h后,该合金的屈服强度仍能保持在~322mpa。相关研究结果可为开发既具有超高强度又具有高热稳定性的新型镁变形合金提供重要指导。 作为最轻的结构金属材料,镁合金在汽车...
  • 2022 - 05 - 19
    点击次数: 0
    来源: 科技日报 葡萄糖是人们从食物中吸收的糖分,它是为人体每个细胞提供动力的“燃料”。那么葡萄糖是否也能为医疗植入物提供动力?美国麻省理工学院和德国慕尼黑工业大学的工程师给出了肯定答案。他们设计了一种新型葡萄糖燃料电池,可将葡萄糖直接转化为电能。该装置厚度仅400纳米,约为人类头发直径的1/100。该含糖电源每平方厘米产生约43微瓦的电力,实现了迄今为止葡萄糖燃料电池的最高功率密度。近...
  • 2022 - 05 - 18
    点击次数: 0
    来源:中国粉体网中国粉体网讯  5月10日凌晨,天舟四号货运飞船在文昌发射场成功发射,在历经数小时飞行后顺利完成与空间站核心舱后向对接,这是我国空间站建设从关键技术验证阶段转入在轨建造阶段的首次发射任务,标志着中国空间站正式开启全面建造。其中,中国科学院上海硅酸盐研究所研制的9种涂层与材料成功应用于天舟四号货运飞船和长征七号遥五运载火箭,助力空间站建设新征程。在此次空间任务中,上海硅酸盐...
  • 2022 - 05 - 18
    点击次数: 0
    稿源:cnbeta.com俄罗斯科学家已经合成了一种含有钪和碳的新型超硬材料。它由聚合的富勒烯分子组成,里面含有钪和碳原子。这项工作为未来研究富勒烯基超硬材料指明了方向,使其成为光伏和光学设备、纳米电子学和光电子学元素、生物医学工程作为高性能造影剂等方面的潜在候选材料。该研究报告发表在《碳》杂志上。近四十年前,被称为富勒烯的新型全碳分子的发现是一个革命性的突破,为富勒烯纳米技术铺平了道路。富勒烯具...
  • 尊龙凯时官方入口 copyright ©尊龙凯时官方入口 copyright 2018  2020 上海市稀土协会 all rights reserved
    主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
    犀牛云提供企业云服务
    网站地图