研究:巨大的“量子漩涡”或能在液态光中形成 -人生就是搏尊龙
日期:
2021-10-25
浏览次数:
1
任何在浴缸里放过水或在咖啡里搅拌过奶油的人都见过旋涡,这是流体循环时出现的一种无处不在的形成。但跟水不同的是,受量子力学奇怪规则支配的流体有一个特殊的限制:正如诺贝尔奖得主lars onsager在1945年首次预测的那样,量子流体中的旋涡只能以整数单位扭曲。这些旋转结构被预测为对研究从量子系统到黑洞的一切都有广泛的用途。但虽然在许多系统中已经看到了最小的可能的量子漩涡即一个单位的旋转,但更大的漩涡并不稳定。虽然科学家们曾试图强迫更大的旋涡将自己固定在一起,但结果却喜忧参半:当旋涡形成后所使用的方法的严重性通常会破坏其效用。现在,来自剑桥大学的samuel alperin和natalia berloff教授发现了一种理论机制,通过这种机制,巨大的量子涡旋不仅稳定并且在其他接近均匀的流体中自行形成。这些发现发表在《optica》上,它可能为实验铺平道路,这些实验可能为了解跟巨型量子漩涡有相似之处的旋转黑洞的性质提供了线索。为了做到这一点,研究人员使用了一种光和物质的量子混合体,称为偏振子。这些粒子通过将激光照射到特殊的分层材料上形成。剑桥大学应用数学和理论物理系的博士生alperin说道:“当光被困于层中时,光和物质变得不可分割,并且把所产生的物质看成是与光或物质不同的东西,与此同时继承了两者的特性,这就变得更加实际了。”偏振子最重要的特性之一来自于一个简单的事实,即光不可能永远被困住。一个需要高密度的奇异粒子的偏振子流体会不断地驱逐光线,并需要从激光器中获得新鲜的光线来生存。“其结果是一种永远不允许沉淀的流体,它不需要遵守通常是物理学中的基本限制如能量守恒。在这里,能量可以作为流体动力学的一部分而改变,”alperin说道。研究人员正是利用了这些不断流动的液态光使难以捉摸的巨大漩涡得以形成。新建议不是将激光照射在极化子流体本身,而是将光塑造成一个环状进而形成一个持续的向内流动,这类似于水流向浴缸排水口的方式。根据该理论,这种流动足以将任何旋转集中到一个巨大的漩涡中。alperin说道:“巨大的旋涡真的可以在适合其研究和技术使用的条件下存在,这相当令人惊讶,但实际上它只是表明极子的流体动力学跟研究得更充分的量子流体有多么彻底的不同。这是一个令人兴奋的领域。”研究人员表示,他们对巨型量子漩涡的研究才刚刚开始。他们能模拟几个量子漩涡的碰撞,因为它们以越来越快的速度围绕着对方跳舞,直到它们碰撞形成一个类似于黑洞碰撞的巨大漩涡。另外,他们还解释了限制最大旋涡尺寸的不稳定性,并与此同时探索了旋涡行为的复杂物理学。“这些结构有一些有趣的声学特性:它们有取决于其旋转的声学共振,所以它们有点像在唱关于自己的信息,”alperin说道,“在数学上,这跟旋转的黑洞辐射有关其自身属性的信息的方式相当类似。”研究人员希望这种相似性能够带来对量子流体动力学理论的新认识,但他们也表示,极子可能是研究黑洞行为的一个有用工具。
hot news
/
相关推荐
2022
-
05
-
19
点击次数:
1
原创 材料学网导读:高强度的mg-ca和/或mg-ce基合金已经得到了很好的发展,但这些镁合金的热稳定性以前很少被研究。本文研制了一种新型的mg-0.8ca-0.7mn-0.2ce合金,具有良好的热稳定性。在300℃下退火6h后,该合金的屈服强度仍能保持在~322mpa。相关研究结果可为开发既具有超高强度又具有高热稳定性的新型镁变形合金提供重要指导。 作为最轻的结构金属材料,镁合金在汽车...
2022
-
05
-
19
点击次数:
0
来源: 科技日报 葡萄糖是人们从食物中吸收的糖分,它是为人体每个细胞提供动力的“燃料”。那么葡萄糖是否也能为医疗植入物提供动力?美国麻省理工学院和德国慕尼黑工业大学的工程师给出了肯定答案。他们设计了一种新型葡萄糖燃料电池,可将葡萄糖直接转化为电能。该装置厚度仅400纳米,约为人类头发直径的1/100。该含糖电源每平方厘米产生约43微瓦的电力,实现了迄今为止葡萄糖燃料电池的最高功率密度。近...
2022
-
05
-
18
点击次数:
0
来源:中国粉体网中国粉体网讯 5月10日凌晨,天舟四号货运飞船在文昌发射场成功发射,在历经数小时飞行后顺利完成与空间站核心舱后向对接,这是我国空间站建设从关键技术验证阶段转入在轨建造阶段的首次发射任务,标志着中国空间站正式开启全面建造。其中,中国科学院上海硅酸盐研究所研制的9种涂层与材料成功应用于天舟四号货运飞船和长征七号遥五运载火箭,助力空间站建设新征程。在此次空间任务中,上海硅酸盐...
2022
-
05
-
18
点击次数:
0
稿源:cnbeta.com俄罗斯科学家已经合成了一种含有钪和碳的新型超硬材料。它由聚合的富勒烯分子组成,里面含有钪和碳原子。这项工作为未来研究富勒烯基超硬材料指明了方向,使其成为光伏和光学设备、纳米电子学和光电子学元素、生物医学工程作为高性能造影剂等方面的潜在候选材料。该研究报告发表在《碳》杂志上。近四十年前,被称为富勒烯的新型全碳分子的发现是一个革命性的突破,为富勒烯纳米技术铺平了道路。富勒烯具...