磁近邻效应和界面电荷转移诱导的层状铁磁结构 -人生就是搏尊龙
日期:
2024-03-12
浏览次数:
3
钙钛矿镍氧化物作为典型的关联电子体系,表现出如金属-绝缘体相变、拓扑结构相变等一系列丰富的物性。近期,由于112相和327相镍基超导体系的陆续发现,更是让镍氧化物成为了功能氧化物材料/器件研究领域的热点。通常,钙钛矿镍氧化物随着温度的降低将发生金属-绝缘体相变,同时伴随着磁性在的顺磁-反铁磁相变。而lanio3成为了钙钛矿镍氧化物中唯一在全温区保持泡利顺磁性的体系。因此,从实验或理论的角度设计和调控lanio3 的磁基态是一直备受关注的问题。前期的研究结果表明,基于镍氧化物/锰氧化物界面的磁邻近效应可以在lanio3中诱导出磁有序界面相,然而,关于其磁基态构型一直存在着较大的争论。例如,有文章报道在lanio3 与 lanio3 组合构成的异质结中,lanio3界面层处于 (1/4,1/4,1/4) 波矢的反铁磁态;而关于lanio3/la0.7sr0.3mno3 异质结,不同的文献分别报道了lanio3 层处于螺旋自旋态或者铁磁态的结果。这些相互矛盾的结论阻碍了人们对类似界面磁邻近效应体系物理规律的深入理解,也妨碍了与界面低维磁性相有关的实际应用可能性。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室m03组博士生王梦琴在陈沅沙副研究员、胡凤霞研究员、孙继荣研究员的共同指导下,联合物理所张庆华副研究员,朱涛研究员等,利用空间分辨偏振中子反射仪、电子能量损失光谱、x 射线吸收光谱等谱仪手段,结合宏观霍尔电输运测量结果,成功揭示了lanio3/lanio3(111)界面由磁邻近和电荷转移效应所导致的层状磁性结构。他们发现该异质结体系将出现四种层状铁磁相,分别为绝缘lanio3体相、半导体lanio3界面相(约3个单胞层),绝缘lanio3界面相(约5个单胞层)和金属性lanio3体相。层状磁性结构出现的原因是界面mn向ni电荷转移导致的mn4 -ni2 超交换作用和mn4 -mn3 双交换作用。这种层状磁结构为深入解析具有强界面电荷转移的磁性异质结体系提供了一个模板,同时为设计更多的界面低维磁性体系并调控其物性提供了有效的手段。该成果以” layered ferromagnetic structure caused by the proximity effect and interlayer charge transfer for lanio3/lanio3 superlattices”为题,发表在《nano letters》。该工作得到了科技部、国家自然科学基金委项目、中国科学院战略性先导科技专项和中国科学院重点项目的支持。研究工作还得到了大科学装置中心包括中国散裂中子源和上海同步辐射光源bl08u1a线站等的大力支持。https://doi.org/10.1021/acs.nanolett.3c03658
hot news
/
相关推荐
2024
-
05
-
23
点击次数:
1
来源:上海交通大学热致变色材料是一类能够响应外部温度变化而改变其光学性质(包括颜色、透明度和反射率)的物质。这些材料因其多功能性而获得了极大的关注,并广泛应用于太阳辐射和热能的动态控制领域。近些年热致变色钙钛矿材料通过外部热刺激可表现出可逆的光学性质变化被认为是有前途的热刺激响应材料,其具有可调性质、快速响应和有效光调制的潜在能力。近日,上海交通大学中英国际低碳学院姚琳副教授团队在材料领域国际知名...
2024
-
05
-
22
点击次数:
3
近日,中国科学院上海硅酸盐研究所研究团队系统地回顾了紫外光致发光材料的发展历史、紫外发光设计原理、分类和应用等方面(图1),相关内容在材料类国际著名学术期刊materials science and engineering: r: reports上发表了题为“ultraviolet photoluminescent materials from traditional ion-activated ...
2024
-
05
-
22
点击次数:
3
来源:广州能源所近日,中国科学院广州能源研究所联合俄罗斯联邦化学物理和药物化学问题研究中心、哈尔滨工业大学郑州研究院和路易斯安那理工大学微制造研究所等,在界面缺陷钝化机制与柔性钙钛矿太阳能电池研究方面取得新的研究进展。钙钛矿表面和晶界处的陷阱状态是柔性钙钛矿太阳能电池(fpsc)进一步商业化的主要障碍之一。该研究将两种新颖的多功能氟化丙胺盐2,2,3,3,3-五氟丙胺盐酸盐(pfpacl)和3,3...
2024
-
05
-
21
点击次数:
0
来源:中国科学院物理研究所由于多自由度之间强烈的关联耦合,过渡金属氧化物表现出非常丰富的物理性能,如金属-绝缘体转变、高温超导、铁磁、铁电、多铁性等等。而随着薄膜生长技术的提高,从原子层尺度人工构建不同氧化物的异质界面,引入外延应力、对称性破缺、电荷转移、轨道重构等界面耦合效应,成为了获取氧化物新材料新物性的重要手段。当两种电负性不同的氧化物结合在一起时,界面处近邻原子轨道之间的相互杂化会形成一个...